LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.C.A.DEGREE EXAMINATION - COMPUTER APPLICATIONS

FIRST SEMESTER - NOVEMBER 2018
16/17/18UCS1AL01- OPERATION RESEARCH

Date: 02-11-2018
Dept. No. \qquad

SECTION-A

ANSWER ALL THE QUESTIONS:
(10X2=20)

1. Define Operation Research.
2. What is unbounded solution?
3. When is transportation problem said to be unbalanced? Give an example.
4. Write down the condition for solving assignment problem.
5. State job sequencing problem.
6. What is idle time?
7. Define dummy activity.
8. What does CPM stand for? What is the objective of CPM?
9. What is Shortage cost?
10. What is carrying cost?

SECTION-B

ANSWER ALL THE QUESTIONS:

11. a) A company has three operational departments (weaving, processing and Packing) with capacity to produce three different types of clothes namely suiting, shirting and woolens yielding a profit of Rs.2, Rs. 4 and Rs. 3 per metre respectively. One metre of suiting requires 3 minutes in weaving, 2 minutes in processing and 1 minute in packing.

Similarly one metre of shirting requires 4 minutes in weaving, 1 minute in processing and 3 minutes in packing. One metre of woolen requires 3 minutes in each department.

In a week total run time of each department is 60,40 and 80 hours for weaving, processing and packing respectively. Formulate the linear programming problem to find the product mix to maximize the profit.
(OR)
b)) Solve the following LPP by Graphical method:

Max $Z=6 x_{1}+9 x_{2}$ Subject to the constraints:

$$
\mathrm{x}_{1}+\mathrm{x}_{2} \leq 12, \quad \mathrm{x}_{1}+5 \mathrm{x}_{2} \leq 45, \quad 3 \mathrm{x}_{1}+\mathrm{x}_{2} \leq 30 \quad, \quad \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0
$$

12. a) Obtain an initial basic feasible solution to the following transportation

Problem by row minimum method.

	A	B	C	D	Available
I	7	4	3	4	15
II	3	2	7	5	25
III	4	4	3	7	20
IV	9	7	5	3	40

(OR)
b) Solve the following assignment problem

	I	II	III	IV
A	10	5	13	15
B	3	9	18	3
C	10	7	3	2
D	5	11	9	7

13. a) Find the sequence that minimizes the total elapsed time (in Hrs) required to complete the following task on 2 machines. Also find the total elapsed time and idle time of each machine.

Jobs	J1	J2	J3	J4	J5	J6
Machine A	3	12	5	2	9	11
Machine B	8	10	9	6	3	1

(OR)
b) The maintenance cost and the resale price of a truck are given below.

Year	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
Maitenance Cost	1000	1300	1700	2200	2900	3800	4800	6000
Resale Price	4000	2000	1200	600	500	400	400	400

The purchase price of the truck is Rs. 8000 . Determine the time at which it is profitable to replace the truck.
14. a) Define the following Terms:
i) Activity
ii) Event
iii) Network
iv) Dangling
(OR)
b) A is the first operation on the project. $\mathrm{B} \& \mathrm{C}$ can be done concurrently \& both must follow A. B must proceed D.Ecan not begin until both B\&C are completed. F is dependent on The completion of both D\&E. F is the last operation on the project. Draw the arrow network and number the nodes.
15.a)Explain the various cost associated with Inventory.
(OR)
b) The annual demand for an item is 3200 units. The unit cost is Rs.6/- and inventory carrying charges 25% per annum. If the cost of one procurement is Rs.150/- determine the following (i) Economic order quality (ii) time between two consecutive orders (iii) number of order per year (iv) the optimal total cost.

SECTION-C

ANSWER ANY TWO QUESTIONS:

(2X20=40)
16. i) Solve by Simplex method:
(10)

Max $Z=3 x_{1}+2 x_{2}+5 x_{3}$ Subject to the constraints:
$\mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{x}_{3} \leq 430, \quad 3 \mathrm{x}_{1}+2 \mathrm{x}_{3} \leq 460, \quad \mathrm{x}_{1}+4 \mathrm{x}_{2} \leq 420$ and $\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$
ii) A company has 3 plants at located A, B \& C. Supply warehouses located at D,E, F,G \& H. monthly plant capacity are $800,500 \& 900$ units respectively. Monthly warehouses requirements are $400,400,500,400 \& 800$ respectively. Unit transportation costs are given below:

Warehouses

		D	E	F	G	H
	A	5	8	6	6	3
Plants	B	4	7	7	6	6
	C	8	4	6	6	3

Determine an optimum distribution for a company in order to minimize the total transportation cost.(Using VAM)

17 (i) A Readymade garments manufacturer has to process 7 items through two stages of production namely cutting \& sewing. The times taken for each of these at the different stages are given below in the appropriate units.

Processing Time	Item	1	2	3	4	5	6	7
	Cutting	5	7	3	4	6	7	12
	Sewing	2	6	7	5	9	5	8

Find an order in which these items are to be processed through these stages, So as to minimize the total processing time and also calculate total elapsed time, idle time of each machine.
ii) Given the following information:

Activity	$1-2$	$1-6$	$2-3$	$2-4$	$3-5$	$4-5$	$6-7$	$5-8$	$7-8$
a	3	2	6	2	5	3	3	1	4
m	6	5	12	5	11	6	9	4	19
b	15	14	30	8	17	15	27	7	28

i) Draw the Project Network
ii) Find the length and variance of each activity.
iii) Find the critical path.
iv) Find the length and variance of the critical path.
18. (i) Define the following Terms:
a) Reorder Level
b) Reorder Point
c) Safety stock
d) Shortage
(10)
(ii) A stockiest has to supply 12,000 units of a product per year to his customer. The demand is fixed and known and the shortage cost is assumed is to be infinite. The inventory holding cost is Re. 0.20 per unit per month and the ordering cost per order is Rs.350. Determine the following
(i) The optimum lot size q_{0}
(ii) Optimum scheduling period t_{0}
(iii) Minimum total variable yearly cost.

